Über 27 Millionen Aufrufe seit März 2014!
Sie vermissen eine spezielle Biografie oder einen Artikel zu einem besonderen Thema? Dann helfen Sie bitte und schicken Sie uns eine E-Mail.
Josephus-Problem
Als Josephus-Problem (auch: Josephsspiel, engl. Josephus problem) ist ein mathematisches Problem bekannt, das auch in der Zauberkunst Anwendung findet, etwa bei Kartenkunststücken auf mathematischer Grundlage.
Beschreibung
Eine Anzahl Gegenstände wird in einem Kreis ausgelegt. Beginnend mit einem der Gegenstände wird eine bestimmte Zahl weitergezählt und der so abgezählte Gegenstand entfernt. Das Ganze kann so eingerichtet werden, dass zum Beispiel bei kreisförmig ausgelegten Spielkarten eine vorher vom Vorführer geheim bestimmte Karte zum Schluss übrig bleibt oder aber zum Beispiel alle roten Karten ausgesondert werden, während die schwarzen liegenbleiben.
Das australische Abzählen ist ein Spezialfall: Hier wird immer um genau 2 weitergezählt.
Geschichte
Der Name geht auf den Soldaten und Historiker Josephus (später Flavius Josephus, *37 oder 38 n. Chr., † nach 100 n. Chr.) zurück.
Nach der Belagerung der Stadt Jotapata durch die Römer im Jahre 67 fiel die Stadt in die Hände der Römer. Der Militärkommandeur Josephus hatte sich mit 40 Soldaten verschanzt. Sie beschlossen, das römische Angebot „Kapitulation gegen Leben“ auszuschlagen und sich selbst umzubringen. Das Los entschied, in welcher Reihenfolge das geschehen sollte. Die beiden Letzten, die übrig blieben, waren Josephus, der ursprünglich gegen den kollektiven Selbstmord war, und ein ein Mann namens Ja'akov. Diese töteten sich nicht und ergaben sich den Römern.
Eine genauere Darstellung, wie die Auswahl der zu Tötenden vor sich ging, findet sich nicht in den historischen Quellen.[1].
Erst in der späteren Literatur taucht die Darstellung auf, dass sich die Soldaten im Kreis aufstellten und zum Beispiel jeden 7. Mann töteten. Daraus ergab sich die mathematische Knobelaufgabe, an welcher Stelle man sich im Kreis einreihen müsse, um als Letzter übrig zu bleiben.
Diese wurde im Laufe der Zeit in verschiedenen Varianten gestellt. Ein japanischer Text aus dem Jahre 1627 beschreibt eine Auszählung zur Bestimmung eines Erben in einer Familie von 30 Kindern, von denen die 15 aus erster Ehe stammen. In De viribus quantitatis von Luca Paciola(1496–1508) findet sich die Beschreibung eines in Seenot geratenen Bootes, von dem nur einige Insassen gerettet werden können, indem die anderen über Bord geworfen werden. Die Forderung lautet, die Christen überleben zu lassen und die Juden über Bord zu werfen.
Cardano führte in Practica arithmeticae generalis (1539) die Bezeichnung Ludus Josephi (Josephsspiel) ein.
Literatur
Beschreibung des mathematischen Problems:
- Ahrens, Wilhelm: Mathematische Unterhaltungen und Spiele, Leipzig, 1901, S. 286ff - Das Josephsspiel (online verfügbar)
- Bachet, Claude Gaspard: Problèmes plaisants et délectables, 1624, S. 174ff (online verfügbar)
- [[Jules D'Hotel]: La prestidigitation sans bagages, Bd. 4, Paris, 1939, S. 315 - Les quinze sacrifies
- Kraitchik, Maurice: Mathematical recreations, 1882, S. 93 - Josephus' Problem
- Ozanam, Jacques: Recreations Mathematiques Et Physiques, Bd. 1, 1723, S. 246f - Probleme XLV (online verfügbar)
- Rouse Ball, W. W.: Mathematical Recreations & Essays, 1947, S. 32 - The Josephus Problem
- Schumer, Peter: The Josephus Problem: Once More around, in: Mathematics Magazine, 75. Jg., Heft 1, Februar 2002, S. 12ff online verfügbar
Historische Quellen:
- Cremer, William Henry: The Magician's Own Book, 1887, S. 320 - The Political Trick
- Hans Ernst: Die Historia von den 15 Christen und den 15 Türken, in: Magie, 20. Jg., Heft 12/1937, S. 312
- Hans, Ernst: Die Historia von den 15 Christen und den 15 Türken, in: Hokus-Pokus, 3. Jg., Heft 8/1941, S. 2f
- Hoffmann, P. F. L.: Der Zauberstab - Das Neueste der Taschenspielerkunst und natürlichen Magie, Hamburg, 1875, S. 205f - Der listige Schiffskapitän'
- Kerndörfer: Carlo Bosco's Zauber-Kabinet, Verlag der Ernst'schen Buchhandlung, Quedlinburg und Leipzg, 1870, S. 191f - Der geprellte Wirth
- Park, Jang-Woo, Teixeira, Ricardo: Serial execution Josephus problem, The Korean Journal of Mathematics, 26. Jg., Heft 1, 2018, S. 1-7 (online verfügbar)
- Sachs, Hans: Historien und gute Schwänke des Meisters Hans Sachs, Pesth, 1818, S. 40ff - Die 15 Christen und die 15 Türken, so auf dem Meere fuhren (online verfügbar)
- Ellis Stanyon: Turks and Christians, in: Stanyon's Magic, 13. Jg., Heft 7, April 1913, S. 54
- van Heusten, W. C.: s'Hertogenbosch, o. J.: Tooverkunsten met de Kaart, S. 91ff - Het schip in nood
- Wallberg, Johann: Sammlung natürlicher Zauberkünste, Erster Teil, Stuttgart, 1768, S. 113ff - Dreyßig Personen oder andere Dinge, deren eine Helfte gut und die andere Helfte schlimm, eilfertig solchergestalten in Ordnung zu rangiren, daß, wenn nach dem Loos der Zahlen je die 9te oder 7de Person oder Ding in der Ordnung ausgemustert wird, solch Ausmusterungs-Loos allein die schlimme Helfte treffe, mithin jemanden von 30. Dingen allein die 15. guten Stücke, und einem anderen dagegen die 15. schlimme zufallen
- Witgeest, Simon: Natürliches Zauber-Buch, Nürnberg, 1707, S. 471ff - Machen/daß unter 30 Personen/worunter 15 Fromme/und 15 Böse seynd/die Bösen sterben/und die Frommen erhalten werden
- o. A.: Dictionnaire Encyclopedique des Amusemens des Sciences Mathématiques et Physiques, Paris, 1792, S. 166f - Problême XVII
Nutzung des Prinzips für Zauberkunststücke:
- Mac Jen: Farben-Vorhersage, in: Magische Welt, 14. Jg., Heft 4/1965, S. 124
- Maskell, Alan: Which Witch, in: Linking Ring, 91. Jg., Heft 1/2011, S. 84ff
- Maskell, Alan: Which Witch, in: Linking Ring, 95. Jg., Heft 11/2015, S. 94f
- Werner Miller: Nicht..., in: Magische Welt, 57. Jg., Heft 5/2008, S. 266
- Skuldano: Tempo, in: Zauberkunst, 6. Jg., Heft 6/1960, S. 159 (Übersetzung aus Triks 1/1959-60)
Web-Links
- Josephus Flavius Problem
- Josephus Flavius game
- Josephus Problem
- Laurent Signac: On the Josephus problem
- YouTube-Video The Josephus Problem - Numberphile
Nachweise
- ↑ Flavius Josephus: Geschichte des jüdischen Krieges, Stuttgart und Leipzig, 1836, S. 301 (online verfügbar)
Übersicht: Artikel zum „zyklischen Abzählen:“ | |
---|---|
Schrittweite 2, getroffene Objekte werden entfernt: Australian Count |
|
konstante Schrittweite, getroffene Objekte werden entfernt: Josephus-Problem |
konstante Schrittweite, getroffene Objekte werden nicht entfernt: Prime Number Principle |
Schrittzahl ist auf getroffenem Objekt notiert, getroffene Objekte werden entfernt: The Last Drink |
Schrittzahl ist auf getroffenem Objekt notiert, getroffene Objekte werden nicht entfernt: Prime Time |
Der Artikel „Josephus-Problem“ basiert auf dem gleichnamigen Eintrag in der deutschsprachigen Wikipedia.
Die Seite ist über diesen Link aufrufbar: Josephus-Problem. |